For those interested in numbers, see google scholar citations profile.

We try to include links for all of our papers. Some of the links open PDFs, others direct you to a journal’s site where that particular publication is available for download. If you cannot access one of our papers, let us know. The copyright notice for these papers is listed at the bottom of the page.


Selected Publications

2024

Stereographic Spherical Sliced Wasserstein Distances_
Tran, H., Bai, Y., Kothapalli, A., Shahbazi, A., Liu, X., Martin, R.D. and Kolouri, S.
ICML, 2024. (Article)

Statistical Context Detection for Deep Lifelong Reinforcement Learning
Dick, J., Nath, S., Peridis, C., Ben-Iwhiwhu, E., Kolouri, S., Soltoggio, A.
CoLLAs, 2024. (Article)

A collective AI via lifelong learning and sharing at the edge
Soltoggio, A., Ben-Iwhiwhu, E., Braverman, V., Eaton, E., Epstein, B., Ge, Y., … & Kolouri, S.
Nature Machine Intelligence, 6(3), 251-264. (Article)

BrainWash: A Poisoning Attack to Forget in Continual Learning
Abbasi, A., Nooralinejad, P., Pirsiavash, H. and Kolouri, S.
CVPR, 2024.(Article)

LCOT: Linear circular optimal transport
Martin, R.D., Medri, I., Bai, Y., Liu, X., Yan, K., Rohde, G.K. and Kolouri, S.
ICLR, 2024. (Article)

NOLA: Compressing LoRA using Linear Combination of Random Basis
Koohpayegani, S.A., Navaneet, K.L., Nooralinejad, P., Kolouri, S. and Pirsiavash, H.
ICLR, 2024. (Article)

SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
Lu, Y., Liu, X., Soltoggio, A., Kolouri, S.
WACV, 2024. (Article)

2023

Sliced optimal partial transport
Bai, Y., Schmitzer, B., Thorpe, M. and Kolouri, S.
CVPR, 2023. (Article)

Linear optimal partial transport embedding
Bai, Y., Medri, I.V., Martin, R.D., Shahroz, R. and Kolouri, S.
ICML, 2023. (Article)

PRANC: Pseudo random networks for compacting deep models
Nooralinejad, P., Abbasi, A., Koohpayegani, S.A., Meibodi, K.P., Khan, R.M.S., Kolouri, S. and Pirsiavash, H.
ICCV, 2023. (Article)

Characterizing out-of-distribution error via optimal transport
Lu, Y., Qin, Y., Zhai, R., Shen, A., Chen, K., Wang, Z., Kolouri, S., Stepputtis, S., Campbell, J. and Sycara, K.
NeurIPS, 2023. (Article)

Multi-Agent Lifelong Implicit Neural Learning
Kolouri, S., Abbasi, A., Koohpayegani, S.A., Nooralinejad, P. and Pirsiavash, H.
IEEE Signal Processing Letters, 2023. (Article)

Lifelong Reinforcement Learning with Modulating Masks
Ben-Iwhiwhu, E., Nath, S., Pilly, P.K., Kolouri, S. and Soltoggio, A.
TMLR, 2023. (Article)

Sharing lifelong reinforcement learning knowledge via modulating masks
Nath, S., Peridis, C., Ben-Iwhiwhu, E., Liu, X., Dora, S., Liu, C., Kolouri, S. and Soltoggio, A.
CoLLAs, 2023. (Article)

Is Multi-Task Learning an Upper Bound for Continual Learning?
Wu, Z., Tran, H., Pirsiavash, H. and Kolouri, S.
ICASSP, 2023. (Article)

2022

Biological underpinnings for lifelong learning machines
Kudithipudi, D., Aguilar-Simon, M., Babb, J., Bazhenov, M., Blackiston, D., Bongard, J., … & Siegelmann, H.
Nature Machine Intelligence, 2022. (Article)

Sparsity and heterogeneous dropout for continual learning in the null space of neural activations
Abbasi, A., Nooralinejad, P., Braverman, V., Pirsiavash, H. and Kolouri, S.
CoLLAs, 2022. (Article)

Generalized sliced probability metrics
Kolouri, S., Nadjahi, K., Shahrampour, S. and Şimşekli, U.
ICASSP, 2022 (Best Paper Award). (Article)

2021

SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
Lu, Y., Liu, X., Soltoggio, A., Kolouri, S.
Preprint. (Article)

Pooling by Sliced-Wasserstein Embeddings
Naderializadeh, N., Comer, J.F., Andrews, R.W., Hoffmann, H., and Kolouri, S.
NeurIPS, 2021. (Article)

Lifelong Learning with Sketched Structural Regularization
Li, H., Krishnan, A., Wu, J., Kolouri, S., Pilly, P.K. and Braverman, V.
ACML 2021. (Article)

Set Representation Learning with Generalized Sliced-Wasserstein Embeddings
Naderializadeh, N., Kolouri, S., Comer, J.F., Andrews, R.W. and Hoffmann, H.
Preprint. (Article)

Radon cumulative distribution transform subspace modeling for image classification
Shifat-E-Rabbi, M., Yin, X., Rubaiyat, A.H.M., Li, S., Kolouri, S., Aldroubi, A., Nichols, J.M. and Rohde, G.K.
Journal of Mathematical Imaging and Vision 63, no. 9 (2021): 1185-1203. (Article)

Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture
Ladosz, Pawel, Eseoghene Ben-Iwhiwhu, Jeffery Dick, Nicholas Ketz, Soheil Kolouri, Jeffrey L. Krichmar, Praveen K. Pilly, and Andrea Soltoggio.
IEEE Transactions on Neural Networks and Learning Systems (2021). (Article)

Wasserstein Embedding for Graph Learning
Kolouri, S., Naderializadeh, N., Rohde, G.K. and Hoffmann, H.
ICLR 2021. (Article+Video)(Project)(Code)

System and method for direct learning from raw tomographic data
Kolouri, S.
US Patent 11,037,030. (Patent)

Machine-vision method to classify input data based on object components
Kolouri, S., Martin, C.E. and Hoffmann, H.
U.S. Patent 11,023,789. (Patent)

Attribute aware zero shot machine vision system via joint sparse representations
Kolouri, S., Rostami, M., Kim, K. and Owechko, Y.
U.S. Patent 10,908,616. (Patent)

2020

Universal Litmus Patterns: Revealing backdoor attacks in CNNs
Kolouri, S., Saha, A., Pirsiavash, H. and Hoffmann, H.
CVPR, 2020. (Article)(Project)(Code)

Sliced cramer synaptic consolidation for preserving deeply learned representations
Kolouri, S., Ketz, N.A., Soltoggio, A. and Pilly, P.K.
ICLR, 2020. (Article+Video)

GAT: Generative Adversarial Training for Adversarial Example Detection and Classification
Yin, X., Kolouri, S. and Rohde, G.K.
ICLR, 2020. (Article+Video)

Statistical and topological properties of sliced probability divergences
Nadjahi, K., Durmus, A., Chizat, L., Kolouri, S., Shahrampour, S. and Şimşekli, U.
NeurIPS, 2020. (Article)

Generative continual concept learning
Rostami, M., Kolouri, S., Pilly, P. and McClelland, J.
AAAI, 2020. (Article)

Neural Networks, Hypersurfaces, and the Generalized Radon Transform
Kolouri, S., Yin, X. and Rohde, G.K.
IEEE Signal Processing Magazine, 2020. (Article)(Code)

Neuromodulated attention and goal-driven perception in uncertain domains
Zou, X., Kolouri, S., Pilly, P.K. and Krichmar, J.L.
Neural Networks, 125, pp.56-69. (Article)

Detecting changes and avoiding catastrophic forgetting in dynamic partially observable environments
Dick, J., Ladosz, P., Ben-Iwhiwhu, E., Shimadzu, H., Kinnell, P., Pilly, P.K., Kolouri, S. and Soltoggio, A.
Frontiers in neurorobotics, 14, 2020. (Article)

SAR automatic target recognition with less labels
Comer, J.F., Andrews, R.W., Naderializadeh, N., Kolouri, S. and Hoffman, H.
International Society for Optics and Photonics, 2020. (Article+Vide)

Method and system for detecting change of context in video streams
Martin, C.E., Stepp, N.D., Kolouri, S. and Hoffmann, H.
U.S. Patent 10,878,276. (Patent)

Method for understanding machine-learning decisions based on camera data
Martin, C.E., Kolouri, S. and Hoffmann, H.
U.S. Patent 10,803,356. (Patent)

Prediction of multi-agent adversarial movements through signature-formations using radon-cumulative distribution transform and canonical correlation analysis
Kolouri, S., Rahimi, A.M. and Bhattacharyya, R.
U.S. Patent 10,755,424. (Patent)

Zero shot machine vision system via joint sparse representations
Kolouri, S., Rao, S.R. and Kim, K.
U.S. Patent 10,755,149. (Patent)

Machine-vision system for discriminant localization of objects
Kolouri, S., Martin, C.E. and Hoffmann, H.
U.S. Patent 10,691,972. (Patent)

Machine vision system for recognizing novel objects
Kolouri, S., Martin, C.E., Kim, K. and Hoffmann, H.
U.S. Patent 10,607,111. (Patent)

Explicit prediction of adversary movements with canonical correlation analysis
Rahimi, A.M., Kolouri, S. and Bhattacharyya, R.
U.S. Patent 10,583,324. (Patent)

The documents listed here are available for downloading and have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be re-posted without the explicit permission of the copyright holder.